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Abstract 

This paper unifies the following ideas for the study of chirality polynomials 
in transitive skeletons: (1) Generalization of ehirality to permutation groups not 
corresponding to three-dimensional symmetry point groups leading to the concepts 
of  signed permutation groups and their signed subgroups; (2) Determination of  the 
total dimension of  the chiral ligand partitions through the Frobenius reciprocity 
theorem; (3) Determination of signed permutation groups, not necessarily corre- 
sponding to three-dimensional point groups, of which a given ligand partition is a 
maximum symmetry chiral ligand partition by the Ruch-Sch6nhofer  partial 
ordering, thereby allowing the determination of corresponding chirality poly- 
nomials depending only upon differences between ligand parameters; such permuta- 
tion groups having the point group as a signed subgroup relate to qualitative com- 
pleteness. In the case of transitive permutation groups on four sites, the tetrahedron 
and polarized square each have only one chiral ligand partition, but  the allene and 
polarized rectangle skeletons each have two chiral ligand partitions related to their 
being signed subgroups of  the tetrahedron and polarized square, respectively. The 
single transitive permutation group on five sites, the polarized pentagon, has a 
degenerate chiral ligand partition related to its being a signed subgroup of a meta- 
cyclic group with 20 elements. The octahedron has two chiral ligand partitions, 
both of degree six; a qualitatively complete chirality polynomial is therefore 
homogeneous of  degree six. The cyclopropane (or trigonal prism or trigonal anti- 
prism) skeleton is a signed subgroup of both the octahedron and a twist group of 
order 36; two of  its six chiral ligand partitions come from the octahedron and two 
more from the twist group. The polarized hexagon is a signed subgroup of  the same 
twist group but not of  the octahedron and thus has a different set of  six chiral 
ligand partitions than the cyclopropane skeleton. Two of  its six chiral ligand 
partitions come from the above twist group of order 36 and two more from a 
signed permutation group of order 48 derived from the P3[P2] wreath product 
group with a different assignment of positive and negative operations than the 
octahedron. 
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1. I n t r o d u c t i o n  

A number of chemically significant phenomena such as optical rotation and 
circular dichroism relate to pseudoscalar measurements, which give real numbers 
having the following two properties: 

(1) They depend upon the measured object but not its spatial orientation; 
(2) They have opposite signs for mirror images such as the two enantiomers 

of a chiral molecule. 

This interest in pseudoscalar measurements has led to the geometrical and 
algebraic study of chirality [ 2 - 8 ] .  Such studies have the following objectives: 

(1) Determination of the ligand partitions for a given molecular skeleton 
which lead to chiral systems, namely how asymmetrical must a ligand partition be 
before all improper rotation symmetry elements S n (including reflection planes 
S 1 -- a and inversion centers S 2 = i) of an achiral skeleton are destroyed. 

(2) Determination of mathematical functions (chirality functions) by which 
the magnitude and sign of a given pseudoscalar property (the dependent variable) can 
be calculated for a given skeleton using parameters which depend only upon the 
ligands located at specific sites on the skeleton (the independent variables). 

Chirality algebra dissects a molecule into a collection of ligands and an under- 
lying skeleton. A molecule with a monocentric skeleton may be represented as MLn, 
in which M is a metal or other central atom and the n ligands L may or may not be 
equivalent. Polycentric skeletons such as allene and cyclopropane are also of interest 
and can be analogously represented. In this paper, as well as in a previous paper by 
King [8], the ligands L are assumed to  be achiral. 

The previous paper by King [8] on chirality relates chirality functions to 
framework groups [9], a method for describing the symmetry of  skeletons having a 
finite number of sites. In this connection, the sites in a given skeleton may be divided 
into orbits, where sites in a given orbit are symmetry equivalent, namely interchange- 
able by a symmetry operation of the skeleton. A skeleton in which all sites are sym- 
metry equivalent thus has only one orbit and is called a transitive skeleton. The 
chirality functions for transitive skeletons are the basic building blocks for chirality 
functions of all skeletons, since the chirality function of a given intransitive skeleton 
is the product of a chirality function of its individual orbits which correspond to 
transitive subskeletons having a smaller number of  sites [8]. 

This paper presents a number of details which are important in understanding 
various aspects of chirality algebra in the limited number of transitive skeletons 
having six or less sites. These include the most important skeletons for building chiral 
molecules such as methane, allene, and cyclopropane derivatives; cyclobutadiene, 
cyclopentadienyl, and benzene metal complexes; and octahedral metal complexes. 
In addition, signed permutation groups and their signed subgroups are defined which 
relate to qualitatively complete chirality polynomials. 
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2. G r o u p s  a n d  g e n e r a t o r s  

Certain elements of a given discrete group G form a set of its generators if 
every element of  G is expressible as a finite product of their (positive or negative) 
powers [ 10]. A set of  relations satisfied by the generators of  G is called a presentation 
of G if every relation satisfied by the generators is an algebraic consequence of the 
particular relations of the presentation. The presentations of the permutation groups 
of  the transitive skeletons of  interest are given in table 1. More extensive listings of the 
presentations of all possible distinct permutation groups of up to seven objects are 
given by Miller [11 ] ; a similar listing of presentations of all possible distinct permuta- 
tion groups on eight objects is given by Burns [12]. A much more recent listing of 
all transitive groups on up to eleven objects and their generators is given by Butler and 
McKay [13]. 

In order to extend the concept of chirality to the presentations of permutation 
groups, a sign (positive or negative) must be assigned to each group element so that the 
identity operation is positive and the following symbolic relationships are satisfied: 

( + ) ( + )  = ( + )  ( la)  

( + ) ( - )  = ( - )  ( lb)  

( - )  ( - )  = (+) .  ( lc)  

The process of assigning signs to group elements satisfying (1 a ) - (1  c) describes a homo- 
morphism from G to the cyclic multiplicative group on the two elements (1, - 1 ) ,  
namely the Z 2 group. A permutation group having such sign assignments for each 
element is a signed permutation group. In signed permutation groups corresponding to 
three-dimensional point groups, the positive group elements are the proper rotations 
including the identity and the negative group elements are the improper rotations 
including an inversion center and reflection planes. In general, a given presentation of 
a permutation group may admit more than one self-consistent sign assignment satisfying 
eqs. ( l a ) - ( l c ) .  Thus, the permutation groups of the polarized square and allene 
skeletons in table 1 have the same presentation but different sign assignments relating 
to the fact that the operation of  period four (ab in table 1) is a proper rotation (C4) in 
the polarized square, but an improper rotation ($4) in the allene skeleton. Also, alter- 
native sign assignments are possible for the presentation of the octahedron (e.g. 
a negative and b positive in table 1), but these do not correspond to actual point 
groups. 

The signed permutation group of an achiral skeleton contains equal numbers 
of  positive and negative elements. The positive elements form a chiral subgroup of 
index two. Introduction of  nonequivalent ligands at the sites of the achiral skeleton in 



18 R.B. King, Applications of topology and group theory: XXI 

o 

0 

~J 

E 

0 

0 

6 

o 

0 

o 

o 

0 

0 

0 

0 +~ 

0 

I I  I I  I I  l i  I I  I I  . ~ .  I1 I I  

I I  I1 I I  I I  I I  I I  I I  I I  I I  

I I  I I  I I  I I  I I  I I  I I  I I  I I  

',.0 ~ oo  oo  ~ t  0 oo  c'q e'q 

~ 0 

~_~_ o 



R.B. King, ApplicatT"ons o f  topology and group theory." X X I  19 

general reduces the symmetry of the system by destroying some of the symmetry 
elements of the unlabeled skeleton. The resulting smaller signed permutation group 
can still contain equal quantities of positive and negative elements (an achiral group) 
or only positive elements (a chiral group). In this abstract manner, chirality can be 
studied without using the concepts of proper and improper rotations. This allows the 
extension of the concept of chirality to permutation groups not isomorphic to three- 
dimensional point groups. An example of such a permutation group is the order 
72 P2 [P3] wreath product auromorphism group of the non-planar K3, 3 bipartite 
graph. 

Permutation groups may also be characterized by their cycle indices [14] 
Z ( G ) ,  which are polynomials of the form 

i=c  
1 

Z ( G )  - I GI Z aixCi2"l ~2 ci2 " ' "  xCtnn " (2) 
i = 1  

In eq. (2) the terms and indices have the following significance: 

[GI = 

F/ = 

C = 

a .  --- 
! 

X k = 

cik = 

number of elements in the permutation group, 

number of sites in the permutation group, 

number of terms in the cycle index, 

number of elements in the permutation group having the indicated 
cycle structure, 

dummy variable referring to cycles of length k, 

exponent indicating the number of cycles of length k in term i. 

Signed permutation groups may be characterized analogously by their signed cycle 
indices, in which each term is preceded by a plus or minus sign depending upon 
whether the term corresponds to a positive or negative element of the corresponding 
permutation group. The signed cycle index Z+-(G) thus may be expressed as follows: 

i =c  
1 Z ci 1 ci2 xCin 

= (sgn)aix 1 x 2 . . . .  (3) Z+--(G) IGI .  n 
1 = 1  

where 

(sgn) = + if the group element is positive 

(sgn) ; - if the group element is negative. 



20 R.B. King, Applications of  topology and group theory: XXI 

By way of illustration, the signed cycle indices for the polarized square and allene 
permutation groups are listed below: 

(A) Polarized squares 

1(X4 + 2X 4 + 2 _ 2X21X2 _ 2X~) Z+-(G) = g x2 (4) 

(B) Allene skeleton 

l ( x  ~ _ 2x 4 + 2 _ 2x~x 2 + 2x~). (5) Z+-(G) = g x2 

Note that the signed cycle indices (Z+-(G) from eq. (3)) for these two distinct skeletons 
are different, whereas the regular cycle indices (Z(G) from eq. (2)) are identical. Thus, 
signed cycle indices Z*-(G) provide more information than ordinary cycle indices 
Z(G) and this additional information is essential for the study of chirality. Further- 
more, in the case of achiral point groups the signed cycle index as defined by eq. (3) 
corresponds to the generalized character cycle index [15-17]  for the antisymmetric 
irreducible representation A -  having + 1 characters for all proper rotations and - 1  
characters for all improper rotations. For brevity, the factor 1/IGI will be omitted 
from cycle indices and signed cycle indices in this paper. 

An element of a permutation group may be assigned a sign (positive or negative) 
as outlined above but must have a parity (even or odd). Thus, the parity of a permuta- 
tion is odd or even depending upon whether the total number of cycles of even length 
in the permutation is odd or even, respectively. Equivalently, the parity of a permuta- 
tion is odd or even depending upon whether the number of two-site transpositions 
in the permutation is odd or even, respectively [18]. Such an assignment of odd and 
even parities to elements of a permutation group G describes another homomorphism 
from G to Z 2 . 

A permutation group must contain either only even permutations or equal 
numbers of even and odd permutations. In an ordinary signed permutation group, all 
positive elements (namely, proper rotations in three-dimensional point groups) are 
even permutations and all negative elements (namely, improper rotations in three- 
dimensional point groups) are odd permutations; if this is not the case, the signed 
permutation group is extraordinary. (In a previous paper [8], ordinary groups were 
called normal, but this terminology can be confusing since a normal subgroup, dis- 
cussed below, refers to a totally different concept.) The signed permutation groups 
of the tetrahedron and allene skeletons are ordinary and those of the polarized square, 
polarized rectangle, polarized pentagon, and octahedron skeletons are extraordinary. 
Extraordinary signed permutation groups may be characterized by the anomalous 
terms in their signed cycle indices, where an anomalous term is a positive term corre- 
sponding to an odd permutation or a negative term corresponding to an even permuta- 
tion. 
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The assignment of signs to each element of a permutation group to give a 
signed permutation group provides a method for defining a new type of subgroup 
relationship. Thus, a signed permutation group H is a signed subgroup of a signed 
permutation group G if all of the operations of H are contained in G with the same 
signs. In order for a group H to be a signed subgroup of group G, the signed cycle 
index of G, Ze(G), must contain with the proper sign (but not necessarily the same 
numerical coefficient) each term in the signed cycle index of H, Z+-(H). Thus, any 
anomalous terms in the signed cycle index of H must be found in the signed cycle 
index of any group G of which H is a signed subgroup. For this reason, the anomalous 
terms of the signed cycle indices of signed permutation groups are convenient indi- 

ators of possible signed subgroup relationships important for the study of qualitative 
npleteness in chirality functions. 

It is instructive to compare the properties os signed subgroups with those of 
ormal subgroups. A signed permutation group K is a normal subgroup of a signed 

permutation group G if K consists only of complete conjugacy classes of G [19]. In 
order for a group K to be a normal subgroup of group G, the signed cycle index of G, 
Z-+(G), must contain each term in the signed cycle index of K, Z+-(K), with the 
proper sign and generally the same numerical coefficient. An exception to the latter 
condition can occur when a single signed cycle index term of G corresponds to two or 
more classes of elements having the same cycle structure. Note that all normal sub- 
groups of G are signed subgroups. However, not all subgroups of G are signed sub- 
groups and not all signed subgroups of G are normal subgroups. 

The following groups are significant in the study of the chirality algebra of 
an achiral skeleton having n sites' 

Pz " the symmetric group on n sites having n! elements. 

G • the three-dimensional symmetry point group of the skeleton. 

R • the subgroup of index 2 in the achiral G consisting of only its proper 
rotations (positive elements). 

N • the normalizer of  G in Pn, namely the largest subgroup of  Pn containing 
G as a normal subgroup. This defines the total permutations of a set of 
isomers whose symmetry point groups contain exactly the same set of 
ligand permutations and has led to the mathematically interesting [6,20] 
but  physically dubious [21 - 23 ] concept of  "hyperchirality". 

M • a maximum symmetry signed permutation group on n objects which has 
the least synametrical chiral ligand partition of G as its most symmetrical 
chiral ligand partition using the Ruch-Sch~Snhofer partial ordering 
relating to the degree of the corresponding chirality polynomial. This 
relates to the concept of qualitative completeness [4,5] and a similar group 
can be defined for the concept of qualitative supercompleteness [7]. 
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Since G is a normal subgroup of N, N can be expressed as the semidirect product 
[24,251 

N =  G A N / G  = G A H .  (6) 

In a few but not all cases, the signed subgroup G is also a normal subgroup of M so 
that M can also be expressed as a semidirect product 

M = G A M / G  = G A C .  (7) 

The group H contains one element corresponding to each diastereomer ( "member of a 
hyperchiral family" [6]) having the same set of  ligand permutations in its symmetry 
point group and therefore the same chirality polynomial. The group C, when it exists, 
contains one element corresponding to each diastereomer which, when present in 
equal quantities in the set of  diastereomers represented by C, leads to a mixture for 
which the lowest degree of chirality polynomial vanishes identically [4,5]. A major 
portion of the confusion in the literature arises from the fact that N and M and thus 
H and C are defined very differently, and thus are not necessarily the same. Thus, G 
must be a normal subgroup of N but may be only a signed subgroup of)14. 

The relationship between the groups Pn, G, R, N, M, H, and C for an achiral 
skeleton can be summarized by the following scheme: 

j Pn-~. ,. 

%Jc 
Vc2 
R 

Fig. 1. 

In this scheme, a dotted arrow represents a subgroup relationship which cannot be 
normal for n ~> 5, a solid arrow represents a signed subgroup relationship which can 
or cannot be normal, a wedge represents a subgroup relationship which must be 
normal, and the groups indicated next to the wedges and the solid arrow are the 
corresponding quotient groups [see eqs. (6) and (7)]. 
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3. I s o m e r  c o u n t  and g roup  r ep re sen t a t i on  t h e o r y  

Consider a skeleton having n sites. The number of permutations of these n 
sites is n! These permutations may be partitioned into n! / IR I sets of I R I permuta- 
tions each, where I RI is the order of the proper rotation subgroup of the skeleton. 
The number n!/IRI is, of course, the isomer count I of the skeleton [26-28] .  This 
section uses group representation theory [25,29] to relate the isomer count to the 
sum of the dimensions of the chiral representations which, in turn, are closely connected 
with chiral ligand partitions and chirality functions. Some related ideas are presented 
rather differently elsewhere [5,25]. In this section, subgroup relationships are not 
signed. 

A chirality function has the property that it is unaffected by ligand permuta- 
tions corresponding to proper rotations (i.e. positive permutation group elements) but 
undergoes a change in sign with no change in absolute value with ligand permutations 
corresponding to improper rotations (i.e. negative permutation group elements). As a 
consequence of this, the representation of the chirality function (i.e. the chiral repre- 
sentation) must contain the antisymmetric representation A- which is the one-dimen- 
sional irreducible representation of all achiral point groups having + 1 characters for all 
proper rotations, namely X(G, A-, Cn) = + 1, and -1 characters for all improper rota- 
tions, namely X(G, A-, Sn) = -1.  

Consider the point group G of a skeleton having n sites as a subgroup of the 
corresponding symmetric group Pn" In order to determine which of the irreducible 
representations F r of Pn correspond to chiral ligand partitions, the standard procedure 
[5] involves subduction [25,29] of these representations of Pn by its subgroup G. 
The characters of the subduced representation Fr, namely X(Pn, Fk, g)l c for the 
operations g in G contained in Pn, are equal to the characters of the corresponding 
representation and operation in Pn using the cycle partitions of the symmetry opera- 
tions in G and permutations in Pn as a basis for comparison. In general, irreducible 
representations of Pn may lead to reducible representations when subduced by G. 
Such subduced representations may contain the antisymmetric representation A- 
which indicates the chirality of the ligand partition corresponding to the irreducible 
representation of Pn in question. 

In order to determine whether the subduced representation contains the anti- 
symmetric representation A -, standard orthogonality methods [25,29,30] are applied 
using the following scalar product of two character vectors: 

#(A-)r - I G[1 [X(G,A-)I .  [X(P,~) c] . (8) 

In eq. (8), the symbols have the following significance: 
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#(A-)r = the number of times that the antisymmetric representation 
A-  appears in the representation of G subduced by the r th 
irreducible representation F r of Pn" 

I G I = the number of operations in G. 

X(G,A-) = a IGl-dimensional vector having +1 for the coordinates 
corresponding to proper rotations of G and -1  for the co- 
ordinates corresponding to the improper rotations of G 
corresponding to the definition of the antisymmetric repre- 
sentation A-.  

X(Pn ,Pk ) [  G = another IGl-dimensional vector having the coordinates 
[X(Pn, I'r, e)la, X(Pn, Fr, g2)la . . . . .  X(Pn, Fr, g l c l ) l c ] ,  
where e is the identity operation of G and g2, g3 . . . . .  gIGI 
are the remaining (non-identity) operations of G listed in the 
same order as in X(G, A-). 

In order to obtain all of the chiral ligand partitions of  the skeleton in question, eq. (8) 
must be applied successively to all irreducible representations of Pn as indexed by r. 
This separately tests all possible ligand partitions for chirality 

This method is actually the most convenient method if specific information on 
chiral ligand partitions is sought, such as might be required for construction of specific 
chirality functions. However, if the objective is only to obtain some insight regarding 
the variety of chiral representations (chiral ligand partitions) through a parameter that 
might be called the chiral dimensionality Xa, then a further mathematical analysis of  
the problem suggests a more direct approach. 

The characters X(Pn, Fr, g)l c appearing as components in the character 
vector X(Pn, l-'r)l G used in eq. (8) arise from subduction of an irreducible representa- 
tion I" r of the symmetric group Pn by its subgroup G. The opposite process is possible, 
namely induction of a representation A of G into the larger group Pn of which G is a 
subgroup. Gorenstein [29] provides a useful summary of this induction process. Let 
ai, 1 <~ i ~< I GI, be a complete set of  coset representatives of G in Pn" Let A be a 
representation of G and let its dimension be d. The definition of A can be extended 
to all of  Pn by setting p equal to the d × d zero matrix for all permutations p found in 
Pn but not in G. The following equation is then used to define a map A* : 

pA* = ((aipafl)A) p E Pn " (9) 

Thus, pA* is a [GI × [GI matrix of blocks whose (i, ])th entry is the d×d matrix 
(a i pa i 1 )A. In general, we call A* the representation of Pn induced by the representa- 
tion A of G. The characters of  the induced representation can be found using the 
following formula [25,29] after setting X(G, A, p) = 0 for permutations of p of Pn 
not found in G: 
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. 1 X(G, A, upu -1) for all p in In. X ( e , A , p )  - l a l  . e l . .  (10) 

Furthermore, the dimension of a representation A* of Pn induced by a representation 
A of G can be found using the following equation, since I P n I = n !: 

dim A* n! - dim A. (11) 
IGI 

Scalar products of character vectors are useful for determining the irreducible 
representations contained in a reducible representation according to the orthogonality 
relationships as exemplified by eq. (8). The Frobenius reciprocity theorem [25,29] 
relates such character vector products involving subduced and induced characters, as 
represented by the following equation using the notation introduced above and 
referring to the case of interest in this work in which symmetry point group G is a 
subgroup of the symmetric group Pn : 

{[X(G, A)I" [X(P.,Pr)Icl}a = {[X(P.,A*)I. [X(P,rr)I}P. (12) 

Now let A be the antisymmetric representation A- .  Then combining eqs. (8) and (12) 
shows the equivalence of the following procedures: 

(1) Subduction: Determination of the number of times that the antisym- 
metric irreducible representation A- of the point group G appears in the representa- 
tion F r of Pn subduced by G as represented in eq. (8). Note that in general the irre- 
ducible representation F r of Pn becomes reducible after subduction by G. 

(2) Induction: Determination of the irreducible representations F r of Pn which 
occur in the representation A-* of Pn induced by the irreducible representation A- of 
the point group G. 

Now consider the dimensionality of the induced representation A-*.  Since 
the antisymmetfic representation A- is always one-dimensional, eq. (11) indicates 
that the dimensionality of A-* is n!/IGI. This means that the sum of the dimensions 
of the irreducible representations F r of Pn contained in A-* (i.e. the representations 
F a corresponding to chiral ligand partitions) must also be n!/IGI. Note the close 
relationship of this quantity to the isomer count 1 = n! / IR I discussed above. For an 
achiral framework group, n!/IGI = 1/2 = n!/IRI since IGI = 2 IRI. The quantity 
n!/IGI thus corresponds to the number of enantiomer pairs when all n sites of the 
skeleton have different ligands and may be called the chiral dimensionality X a. The 
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chiral dimensionality rapidly increases as the number of sites n increases, indicating 
that the set of chiral ligand partitions also rapidly becomes large and therefore compli- 
cated. For example, in the cube, which has eight sites and the 0 h point group of order 
48, the chiral dimensionality is 8!/48 = 840, indicating a complicated set of chiral 
ligand partitions even for this very symmetrical polyhedron. This complicated set of 
chiral ligand partitions for the cube is listed in one of Ruch and Schonh6fer's papers 
[4]. For this reason, the detailed discussion of the chiral ligand partitions and chirality 
polynomials in this paper will be limited to transitive skeletons having no more than 
six sites. 

4. Chiral i ty polynomials  

The subduction procedure outlined above and described in detail elsewhere 
[5,8] can be used to determine the irreducible representations of the symmetric group 
corresponding to the chiral ligand partitions for a given skeleton. The sum of the 
dimensions of these chiral representations must equal the chiral dimensionality 
X a = n!/IGI; this relationship can be used to check the subduction calculations. 
Furthermore, a partial ordering of the chiral ligand partitions is possible based on the 
corresponding Young diagrams [4,5]. This partial ordering corresponds to the degrees 
of the corresponding chirality polynomials as calculated by a group-theoretical algorithm 
[6,8] and is used to define the relative symmetries of different ligand partitions 
throughout this paper. In its most convenient forms [6,8], the group-theoretical 
algorithm uses the permutations of all operations of the symmetry point group on the 
skeletal sites, i.e. the permutations of the corresponding framework group [8,9]. 

Chirality polynomials are most useful is they can express the magnitudes and 
signs of pseudoscalar properties as functions which depend only upon the differences 
between the parameters assigned to ligands at the various sites of the skeleton in 
question. By using algebraic invariant theory, Meink6hn [31,32] has shown that only 
the lowest degree of chirality polynomials for a given skeleton (framework group) are 
required to have this desirable property of depending only upon the differences 
between the ligand parameters. 

Previous studies of chirality algebra [4,5,8] have focused on identifying the 
Ruch-Sch6nhofer maximum symmetry ligand partition making chiral a given achiral 
skeleton by destroying all of the improper rotation symmetry elements. This relates 
to calculating the lowest degree chirality polynomial, namely a chirality polynomial 
which must depend only upon the differences between the ligand parameters [31,32]. 
This problem can be "inverted" to give the following problem: Find the permutation 
group on n objects for which a given partition of n ligands is a maximum symmetry 
chiral ligand partition by the Ruch-Sch6nhofer partial ordering [4,5], thereby 
allowing the determination of a chirality polynomial for the ligand partition in question 
which is required to depend only upon the differences between ligand parameters. 
This problem has the following aspects of particular interest: 
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Table 2 

Ligand partitions for five sites 

Chirality Irreducible 
Ligand polynomial representation 

partition degree dimension 

Signed transitive permutation groups 
having the ligand partition as a max 
symmetry chiral ligand partition a 

(15 ) 10 1 P5 

(213) 6 4 (tetrahedron + center) 

(221) 4 5 (trigonal bipyramid) 

(312) 3 6 MS,, D 5 

(32) 2 5 M 5 

(41) 1 4 

(5) 0 1 

aThere is no transitive signed permutation group for which the (213) or (221) 
ligand partition is the maximum symmetry chiral ligand partition corresponding to 
a minimum degree chirality polynomial. In both of these cases, an intransitive 
permutation group is indicated in parentheses having these ligand partitions as 
the maximum symmetry chiral ligand partition. 
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(1) Solution of this problem provides a group theoretical approach to the 
search for qualitatively complete chirality polynomials [4,5]. In this context, a 
chirality polynomial is said to be qualitatively complete if there is no nonracemic 
isomer mixture for which it vanishes identically [5]. The permutation groups M for 
the least symmetrical chiral ligand partitions may define quotient groups [e.g. C of 
eq. (7)], which in turn define permutations leading to nonracemic isomer mixtures 
for which lower degree chirality polynomials derived from more symmetrical chiral 
ligand partitions vanish. In these cases, a chirality polynomial derived from a less 
symmetrical chiral ligand partition must be added to the lowest degree chirality 
polynomial in order to obtain a qualitatively complete chirality polynomial. 

(2) The permutation group M may not always correspond to an actual 
three-dimensional point group, i.e. a framework group [9] having n sites. Therefore, 
all transitive permutation groups of degree n (i.e. those permuting n objects) [11-13] 
are potentially important to the study of qualitatively complete chirality functions, 
not just those realizable as three-dimensional point or framework groups. 

(3) Since the treatment of qualitatively complete chirality functions may 
require consideration of permutation groups which are not realizable as three-dimen- 
sional point or framework groups, the generalization of chirality to signed permutation 
groups having characteristic signed cycle indices [eq. (3)] is required. 

(4) Signed permutation groups on n objects of which the framework group 
G is a signed subgroup are important to this treatment, as exemplified by the group 
M defined above. In order for G to be a signed subgroup of M, the same anomalous 
terms in the signed cycle index of G must be present in the signed cycle index of M. 
This facilitates greatly the search for signed permutation groups M that can correspond 
to ligand permutations leading to nonracemic isomer mixtures for which some chirality 
polynomials corresponding to G may vanish. 

(5) There are ligand partitions for which there is no possible transitive 
signed permutation group having as its lowest degree chirality polynomial a polynomial 
corresponding to the ligand partition in question. The simplest such cases are the 
(213) and (221) ligand partitions on five sites (table 2), which lead to the lowest degree 
chirality polynomials for the intransitive framework groups [9] Ta[O(L ), 4C3(L)] 
(tetrahedron + center) and D3h [C 3(L 2), 3 C 2 (L)] (trigonal bipyramid), respectively, 
but not for any transitive signed permutation groups of degree five (table 3). 

The general ideas outlined in this section are illustrated in the relatively simple 
cases of the transitive skeletons with four sites, and are then extended to the more 
interesting transitive skeletons with five and six sites. 

5. Transit ive skeletons having four  sites 

The four transitive signed permutation groups on four objects have the four 
non-trivial possible partitions of four ligands as their highest symmetry chiral ligand 
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partitions by the Ruch-SchOnhofer partial ordering [4,5]. Thus, the ligand partitions 
(14), (212), (22), and (31) corresponding to irreducible representations of the sym- 
metric group /'4 ( ~  Ta) of dimensions 1, 3, 2, and 3, respectively, are the highest 
symmetry chiral ligand partitions for the T a tetrahedron, C4v polarized square, D2d 
allene, and C2v polarized rectangle, respectively. The ligand partitions (14) and (212) 
are the only chiral ligand partitions for the tetrahedron and polarized square in accord 
with their chiral dimensionalities X a = n ! / I G I of 24/24 = 1 and 24/8 = 3, respectively. 
However, both the allene and polarized rectangle skeletons have two chiral representa- 
tions namely (14) + (22) of total dimension 3 for the allene skeleton (24/ID2al = 3) 
and (212)+(31)  of total dimension 6 for the polarized rectangle skeleton 
(24/16"2ol = 6). Thus, a single chirality polynomial is qualitatively complete for the 
tetrahedron or polarized square, whereas two-component chirality polynomials are 
required in the cases of allene and the polarized rectangle for qualitative completeness. 
This fundamental point is already recognized in the original papers by Ruch and 
Sch6nhofer [4] and Mead [5] on chirality functions. However, the full permutation 
group theoretical significance of this situation has not been clearly stated. 

Consider first the following three permutation isomers having the allene 
skeleton with the framework group D2d [2 od(L 2)] : 

B C C D D B 

A ~kD A B A ~, C 

I(bcd) I(cdb) I (dbc) 

Fig. 2. 

These isomers are related by keeping ligand A fixed and permuting ligands B, C, and D 
in a threefold "symmetry" operation. The set of three isomers I(bcd), I(cdb), I(dbc) 
thus forms a group isomorphic to the cyclic group C 3 based on the ligand permutations 
required to form a given number of the set from a reference isomer, say I(bcd), taken 
as the identity element of the group. 

The lowest degree chirality polynomial corresponding to the (2 2) ligand 
partition for one of the above isomers, say I(bcd), is the following polynomial of 
degree 2: 

(2 2) [I(bcd)] = (B -A)(D - C). (13) 

In eq. (13) and in the following similar equations, the letters representing the ligands 
are also taken to mean the corresponding chirality polynomial parameters, for brevity 
and to avoid too many confusing indices. 
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The chirality polynomial in eq. (13) has a major flaw, namely it vanishes 
identically for a nonracemic mixture of equal quantities of the three isomers I(bcd), 
I(cdb), and I(dbc), i.e. 

X(22) [I(bcd) + I(cdb) + I(dbc)] =- O. (14) 

In order to obtain a chirality polynomial without this flaw, it is necessary to use a 
polynomial of degree 6 derived from the other chiral ligand partition of the allene 
skeleton, namely (14). However, a chirality polynomial obtained from this chiral 
ligand partition and the permutations of the D2a symmetry point group of the allene 
skeleton using the standard group-theoretical algorithm [6,8] will not be a function 
only of the differences between the ligand parameters. In order to obtain a chirality 
polynomial from the chiral ligand partition (14), which must be a function only of 
the differences between ligand parameters, it is necessary to use the permutations 
from a group of degree 4 for which the ligand partition (14) is the lowest degree chiral 
ligand partition. This permutation group [M in eq. (7)] is, of course, that of the tetra- 
hedron T a -~ P4 (table 1). From the ligand partition (14) and the permutation group 
T a (not D2a), the following chirality polynomial of degree 6 is obtained using the 
standard group-theoretical procedure [6,8] : 

X(14)[I(bcd)] = ( $ 2 - - S 1 ) ( $ 3 - - $ 1 ) ( S 4 - - S 1 ) ( $ 3 - - $ 2 ) ( $ 4 - - $ 2 ) ( $ 4 - - $ 3 ) .  (15) 

In eq. (15) and in similar following equations, a variable s k represents the parameter of 
the ligand located at site k of the skeleton. 

The chirality polynomial of eq. (15) is familiar as the lowest degree chirality 
polynomial for a tetrahedral skeleton such as methane. Furthermore, this chirality 
polynomial does not vanish for a nonracemic mixture of equal quantities of the three 
isomers I(bcd), I(cdb), and I(dbc). 

The observations outlined above suggest that T a plays the role of M and C a 
plays the role of C [see eq. (7)]. The group D2a is a signed subgroup of T u and 
represents the symmetry of the allene skeleton. The group C a represents the permuta- 
tions forming the isomers of the nonracemic mixture (i.e. I(bcd) + I(cdb) + I(dbc))for 
which the lowest degree chirality polynomial of the allene skeleton vanishes. The non- 
racemic mixture of equal quantities of I(bcd), I(cdb), and I(dbc) has the higher 
effective permutational symmetry T a relative to the D2a permutational symmetry of 
a single isomer, and this higher symmetry is reflected in the form of the chirality 
polynomial required in order to avoid its vanishing for a nonracemic mixture. In other 
words, the vanishing of the degree 2 polynomial of eq. (13) for the nonracemic 
mixture of equal quantities of I(bcd), I(cdb), and I(dbc) is diagnostic of a higher 
effective symmetry for this system. 



34 R.B. King, Applications of  topology and group theory: XXI 

It is instructive to compare this property of the allene skeleton with that of 
the polarized square skeleton, which has (212) as its only chiral ligand partition. A 
set of polarized square isomers analogous to I(bcd), I(cdb), and I(dbc) is the follow- 
ing: 

B j C j ~ j D  D ~ B  

A 'D A B A C 

II (bcd) II (cdb) II (dbc) 
Fig. 3. 

The chirality polynomial corresponding to the (212) ligand partition has degree 3 
and can be represented as follows: 

X(212)[I(bcd)] = (s 2 - s  1)(s 4 - s  3)[(s 1 - s  3) + (s 2 - s 4 ) ] .  (16) 

For a nonracemic mixture of equal quantities of the three isomers II(bcd), II(cdb), 
and II(dbc), this polynomial has the following value: 

2(212)  [II(bcd) + II(cdb) + II(dbc)] 

= 2[(AC+DB)(B-D)+ (AD+BC)(C-B)+ (AB+ CD)(D-C)I ~ O. (17) 

The added [(s I - s3) + (s 2 - s4) ] factor of the degree 3 polynomial (16)prevents 
eq. (17) from vanishing for the nonracemic mixture of equal quantities of II(bcd), 
II(cdb), and II(dbc). The single chirality polynomial of eq. (16) is thus qualitatively 
complete. Note also that the C4v point group of the polarized square is not a signed 
subgroup of the tetrahedron (Ta), since the cycle index term x 4 corresponds to a 
positive operation (C4) in C4v but a negative operation ($4) in T d. 

The remaining transitive skeleton with four sites is the polarized rectangle 
which has two chiral ligand partitions, namely the degree 1 (31) partition and the 
degree 3 (212) partition. The lowest degree chirality polynomial is therefore the 
following degree 1 (linear) polynomial: 

X(31) = (s 1 - s 3 )  + (s 2 --S4). (18) 

This polynomial, however, vanishes for the nonracemic mixture of equal quantities 
of the following two isomers: 
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III (bac) III (cba) 
Fig. 4. 

However, the following degree 3 polynomial from the (212) chiral ligand partition 
[compare eq. (16)] does not vanish for this isomer mixture: 

X(212) [III(bac) + III(bca)] 

= ( B - A ) ( C - A )  [ A - A + B - C I  + ( C - A ) ( A - B )  [ A - B +  C - A I  

= 2(B - A )  (C -A)  (B - C). (19) 

In this connection, note the following: 

(1) The ligand partition in the nonracemic isomer pair III(bac) + III(cba) is 
(212), in accord with the ligand partition leading to the polynomial in eq. 
(19). 

(2) C2v is a normal subgroup of C4v. 
(3) C4v can be represented by the following semidirect product [24,25] : 

Gv = C2u ^ C2" (20) 

Thus, the groups C4v, C2v, and C 2 correspond to the groups M, G, and C, respectively, 
in eq. (7). 

6. Transitive skeletons having five sites 

There are only four transitive signed permutation groups on five sites (table 2). 
Furthermore, three of these signed permutation groups do not correspond to frame- 
work groups [9] having five sites; these are the following: 

(1) The symmetric group Ps having 120 operations. 
(2) The ordinary metacyclic group M s having 20 operations and the following 

signed cycle index: 

XlS + 5xlx  22 + 4x s _ 1 0 x l x 4 "  (21) 
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(3) The extraordinary metacyclic group M s, having 20 operations and the 
following signed cycle index: 

2 _ 5x 1 x4 (22) s + 4x s + 5xx x 4 - 5 x  I x 2 x I 

Signed permutation groups on five sites thus represent the simplest examples of the 
extension of the concept of chirality to permutation groups not corresponding to 
three-dimensional point groups or framework groups. The two signed metacyclic 
groups M s and M s, are derived from the same underlying unsigned group but with 
different assignments of positive and negative operations. They thus have the same 
cycle index [eq. (2)] but different signed cycle indices [eq. (3)]. One of these meta- 
cyclic groups, Ms, is ordinary and its chiral ligand partitions are the one-dimensional 
(1 s) partition of the symmetric group Ps and the five-dimensional (32) ligand parti- 
tion. The other metacyclic group, Ms, , is extraordinary, with the anomalous signed 
cycle index terms + 5x 1 x 4 and - 5 x  1 x ] and has a single chiral ligand partition, 
namely the six-dimensional (312). This latter metacyclic group is important in under- 
standing the chirality polynomials of the single type of transitive skeleton having five 
sites, namely the polarized pentagon. In general, extraordinary signed permutation 
groups appear to arise more frequently in chirality algebra than related ordinary 
signed permutation groups. 

The only transitive signed permutation group on five sites which corresponds 
to a three-dimensional point group is the polarized pentagon, framework group 
Csv [5%(L)], isomorphic to the D s dihedral group and corresponding to, for example, 
the cyclopentadienyl-manganese tricarbonyl (cymantrene) skeleton. This skeleton has 
been treated in some detail both in a previous paper [8] and in an earlier paper by 
Dugundji et al. [6], but also exhibits some other interesting features in the context 
of the present paper. The polarized pentagon has only one chiral ligand partition, 
namely the six-dimensional (312) partition also found in the extraordinary metacyclic 
group Ms,.  However, the (312) chiral ligand partition appears twice in the polarized 
pentagon. This degeneracy is in accord with its chiral dimensionality of 5!/I Csvl = 12 
and corresponds to two distinctive chiral isomers having the (312) ligand partition and 
depicted as follows: 

A c 

A B 

IV12 Fig. s. IV13 
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Using the standard group-theoretical algorithm [6,8], the following chirality poly- 
nomials of degree 3 can be obtained from isomers IV1= and IV13, respectively: 

X(312 )12 (Csu )  

= ( $ 5  - -  S1)3 + (S1 -- $2)3 + ($2 -- $3 )3 + (S3 -- S4)3 + ($4 -- S5)3 ( 2 3 a )  

X(312 )13(Csv ) 

= (S 5 -- $2)3 + (S 1 -- $3)3 + (S 2 -- $4)3 + (S 3 -- S5)3 + (S 4 -- S l ) 3 .  ( 2 3 b )  

However, the polynomial X(312)12(C50) [eq. (23a)] vanishes for the chiral isomer 
IV13 and the polynon~al X(312)13(Csv) [eq. (23b)] vanishes for the chiral isomer 
IV12. Therefore, neither of these chirality polynomials is qualitatively complete. Their 
sum is qualitatively complete and is equal to the degree 3 polynomial obtained by 
applying the standard group-theoretical algorithm to either IV12 and IV13 using the 
extraordinary metacyclic group Ms,, which is the signed pemmtation group generated 
by the ten symmetry permutations of one Csv isomer and the x 1 x 4 cycle index 
permutation necessary to convert one isomer into the other. The chirality polynomial 
of the extraordinary metacyclic group M s, can be represented as the following sum: 

X(312) (Ms,) = (312 ) (Cso)12 + (312 ) (Cso)13. (24) 

Some of these observations on transitive signed permutation groups on five 
sites are summarized in table 3, particularly the transitive signed permutation groups 
(table 2) having a given chiral ligand partition as a maximum symmetry chiral ligand 
partition by the Ruch-Sch6nhofer partial ordering [4,5]. 

7. Transitive skeletons having six sites 

There are three transitive skeletons having six sites, the octahedron O h [3 C 4 (L 2)] 
having 48 symmetry operations and a chiral dimensionality of 6!/I O hl -- 720/48 = 15, 
and the polarized hexagon Csv[3%(L2)] and cyclopropane skeleton D3a [3C2(L2) ] 
(trigonal prism) having 12 symmetry operations and chiral dimensionalities of 
720/12 = 60. The permutation groups of the polarized hexagon and cyclopropane 
skeletons have the same cycle indices [eq. (2)], but differ in the assignments of 
positive and negative operations (table 1) and therefore have different signed cycle 
indices (eq. (3) and table 2). All three of these skeletons are extraordinary and there- 



38 R.B. King, Applications o f  topology and group theory: X X I  

fore cannot contain the fully asymmetric (16) chiral ligand partition. Other transitive 
permutation groups on six sites (table 3) do not correspond to actual point or frame- 
work groups. 

The octahedron, like the polarized pentagon discussed above, has two chiral 
ligand partitions of the same degree, namely the degree 6 ligand partitions (313) and 
(23) of dimensions 10 and 5, respectively, leading to the required chiral dimensionality 
of 15, and corresponding to the following two ligand distributions: 

A A A~ A A~. B 
2 4 2 4 

B C 

C C 

V (:.313) V (23) 
Fig. 6 

The degree 6 chirality polynomials for both of the chiral ligand partitions of the octa- 
hedron can be expressed in terms of  the same three degree 3 polynomials f(sn), g(Sn), 
and h(sn) as follows (1 ~ n ~< 6): 

X(23) = f (s  n) [g(Sn) + h(Sn) ] (25a) 

X(313) = f(Sn) [g(Sn) - h(Sn) ] , (25b) 

where 

f (Sn) = (S 1 -- $6)  (S 2 -- $5)  (S 3 -- $4)  ( 2 6 a )  

g(Sn) = (Sl - $ 2 ) ( $ 2  - $3)  @3 - S1)  + ($3 - $6)  ($6 - $ 5 )  ($5 - $3)  

+ (S 1 - $5)  (S 5 - $4)  (S 4 -- S1)  + (S 2 -- $4 )  (S 4 -- $6)  (S 6 -- $2)  ( 2 6 b )  

h(Sn) = (s 1 - s  2 + $ 6 - $ 5 ) ( s  1 - s  4 + s 6 - $3)  (s 2 - s  4 + s 5 - $ 3 ) .  (26c) 

The degree 3 polynomials f(Sn) , g(Sn) , and h(Sn) measure the effects of the separating 
[8] reflection planes (oh) , the threefold rotation axes (C3), and the fourfold rotation 
axes (C4) , respectively, of the octahedron on the pseudoscalar properties evaluated by 
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the chirality polynomial. Because of the same degrees of both chiral ligand partitions 
of the octahedron, a homogeneous qualitatively complete chirality polynomial 
XQC [Oh] can be expressed as follows: 

XQc[Oh] = f(Sn) [w I g(Sn) + w 2 h(Sn) ] . (27) 

In eq. (27), the coefficients w 1 and w 2 are weighting coefficients that control the 
proportions of X(313) and X(23) in the homogeneous XQC [Oh]. Also the following 
relationships are found involving f(Sn), g(Sn) , and h(Sn), where Oh,(ambncP. . . ) 
schematically indicates the permutations of a monomial of the form a m b n c  p . . . under 
the 48 operations of the octahedral group as when applying the group-theoretical 
algorithm [6,8]: 

f (s  n) h(s n) = - f(Sn) g(s n) + f(s  n) P(s n) (28) 

f (s  n) g(s n) = Oh.(a3b2c) + Oh,(a2b2cd) (29) 

f (s  n) h(s n) = - Oh,(a3b2c) + Oh,(a2b2cd) (30) 

f (s n) P(S n) = (2 )Oh ,(a2 b2 cd) (31) 

This leads to the following results in accord with the full group-theoretical algorithm 
for the calculation of the chirality polynomials for the (23) and (313) chiral ligand 
partitions of the octahedron: 

X(23) = f(Sn)g(Sn) + f(sn)h(s n) = (2)Oh,(a2b2cd) (32) 

X(313) = f(Sn) g(s n) - f(Sn) h(s n) = (2)Oh,(a3b2 c). (33) 

The remaining two transitive skeletons having six sites have only 12 symmetry 
operations and therefore have chiral dimensionalities of 60. Because of these large 
chiral dimensionalities, the sets of chiral ligand partitions for these skeletons are larger 
and more complicated than the examples discussed above. Understanding these systems 
is therefore facilitated by searching for larger signed permutation groups of degree 6 
for which the signed permutation groups of these transitive skeletons are signed sub- 
groups. The anomalous terms of the signed permutation groups can serve as a guide 
for this purpose. 
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Consider first the skeleton represented by the framework group D3h [3 C 2 (L 2)] 
or the permutationally equivalent D3a [3aa(L2) ] corresponding to, for example, the 
cyclopropane skeleton as well as the trigonal prism or antiprism [8]. The anomalous 
terms in the signed cycle index of the corresponding signed permutation group are 
+x23 and -x~x~ (table 3). The largest signed permutation groups having both of these 
anomalous terms in their signed cycle indices are the octahedron O h of order 48, chiral 
dimensionality 720/48 = 15, and the chiral ligand partitions (313) and (23) (see above) 
and a group designated in table 3 as T9' of order 36,chiral dimensionality 720/36 = 20, 
and the ten-dimensional chiral ligand partitions (313) and (412). The trigonal anti- 
prism or the permutationally equivalent trigonal prism arises by removal of the C 4 axis 
from the octahedron and is a signed subgroup of the octahedron. The T9' signed 
permutation group of order 36 is a "twist group" derived from a trigonal prism by 
adding a threefold twist operation T3 of cycle structure Xl 3 x 3 in which one of the 
parallel triangular faces of the trigonal prism is twisted by 120 ° while leaving the other 
triangular face fixed. 

The trigonal prism signed permutation group D3h [3C2(L2) ] contains no less 
than the six chiral ligand partitions (23) + 2(313) + (321) + (412) + (42), in accord 
with its chiral dimensionality of 60. The chiral ligand partitions (23) + (313) of 
degree 6 relate to the generation of this signed permutation group by removal of the 
C 4 axis from the octahedron, whereas the chiral ligand partitions (313) and (412) of 
degrees 6 and 3, respectively, relate to the generation of the D3h [3C2(L2) ] signed 
permutation group from the twist group T9' by removal of the T 3 twist operation 
defined above. Thus, reduction of the symmetry to D3h [3 C 2 (L 2)] adds only two new 
chiral ligand partitions, namely (321) and (42); the latter leads to the following 
lowest degree chirality polynomial of degree 2: 

X ( 4 2 )  ( O 3 h )  = (S 1 - $2)  (S 4 -- $6 )  - (s 1 -- $3 )  (s 4 - $5) .  ( 3 4 )  

This chirality polynomial vanishes for the following chiral isomer (VI)having a (313) 
ligand partition, indicating that it is not qualitatively complete: 

B D 

C 

VI 
Fig. 7. 
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This chiral isomer effectively has the twist operation T 3 discussed above as a "sym- 
metry operation", since leaving the bottom BCD face fixed and rotating the top AAA 
face by 120 ° around the C 3 axis leads to a configuration indistinguishable from the 
original configuration. This indicates that a chirality polynomial derived from the twist 
group T9 t must be added to the polynomial 34 in order to obtain a qualitatively 
complete chirality function for the trigonal prism (cyclopropane) skeleton. 

Now consider the polarized hexagon skeleton C6013%(L2)] which also has 
chiral dimensionality 60 and six chiral ligand partitions, namely (22 12) + (313) + (3 21) 
+ (32) + 2(412). In this case, the anomalous signed cycle index terms are ÷x 3, +x6, 
and -x21x22. The anomalous signed cycle index term +x 6 found in C6013%(L2)] 
prevents it from being a signed subgroup of the octahedron for which the x 6 signed 
cycle index term is not anomalous. However, all three of the anomalotis signed cycle 
index terms in C6v are also present in the twist group T9' (table 3), and indeed the 
chiral ligand partitions of Tg', namely (313) and (412), are among those found in 
C6v [3%(L2) ] . In .addition, the polarized hexagon is a signed subgroup of the extra- 
ordinary signed wreath product group T1 1" or P3 [/°2]" (table 3) which has the chiral 
ligand partitions (412) and (32). The group T11" is derived from the same unsigned 
wreath product group P3 [P2] as the octahedron, but has a different assignment of 
positive and negative operations (table 3). The reduction of the symmetry to 
C6v[3av(L2)] adds only two new chiral ligand partitions, namely (321) and (22 12). 
The action of the T 3 twist operation of the twist group T9' on a polarized hexagon 
can be visualized as leaving three alternate vertices (e.g. 1, 3, and 5 in VII below), 
fixed while rotating the other three vertices through a C 3 operation, thereby leading 

2 / .... -~3 

VII 
Fig. 8. 

to the required x~x 3 cycle index term for the twist operation. The polarized hexagon 
may also be obtained from the extraordinary wreath product group P3 [P2]" (T11") 
by removal of the period four operation x~x 4 (now a negative operation rather than 
a positive operation in the octahedon O h or T11') and the X1X2,4 XlX2 , 2  2 and x2x 4 
operations generated from it. Thus, the generation of the polarized hexagon from the 
large groups T9' and P3 [P2]" is completely analogous to the generation of the tri- 
gonal prism Dab [3C2(L2) ] from the larger groups T9' and O h (T11'). 
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Table 4 

Ligand partitions for six sites 

Chirality Irreducible 
Ligand polynomial representation 

partition degree dimension 

Transitive signed permutation groups 
having the ligand partition as a max 
symmetry chiral ligand partition 

(16 ) 15 1 P6 
(214 ) 10 5 

(2212 ) 7 9 P2 [e31 

(313 ) 6 10 O h 
(23 ) 6 5 Oh, P2[P3]' 
(321) 4 16 

(412) 3 10 P3[P2] ", D3hx C3, Oh/C2, C6o 
(3 2) 3 5 P3[P2]", OhiO2, C6o 
(42) 2 9 D3h, D3d 
(51) 1 5 
(6) 0 1 

Some of these observations on transitive signed permutation groups on six sites 
are summarized in table 4, particularly the transitive signed permutation groups 
(table 3) having a given chiral ligand partition as a maximum symmetry chiral ligand 
partition. 

8. S u m m a r y  

This paper unifies the following ideas from diverse sources for the study of 
chirality polynomials in transitive skeletons: 

(1) The concept of chirality is generalized to permutation groups not corre- 
sponding to three-dimensional symmetry point groups by introducing the ideas of 
signed permutation groups, signed cycle indices, and signed subgroups (sect. 2). 

(2) The Frobenius reciprocity theorem [29] provides a basis for determining 
the total dimension of the set of chiral ligand partitions (chiral dimensionality), 
thereby indicating the complexity of a qualitatively complete chirality polynomial 
(sect. 3). 

(3) Signed permutation groups of which a given ligand partition is the maxi- 
mum symmetry chiral ligand partition by the Ruch-Sch6nhofer  partial ordering 
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[4,5] allow the determination of  corresponding chirality polynomials which are 
required to depend only upon differences between ligand parameters by Meink6hn's 
algebraic invariant theory [31,32] (sect. 4). Such signed permutation groups need not 
correspond to actual three-dimensional point groups, thereby making necessary the 
generalization of  chirality noted above. These signed permutation groups relate to the 
permutations within nonracemic isomer mixtures for which qualitatively incomplete 
chirality of  insufficient degree can vanish, thereby indicating a higher effective sym- 
metry of such systems. In all cases, the actual symmetry point group of  the skeleton 
must be a signed subgroup of  any larger permutation group indicating such higher 
effective symmetries. 

These ideas are illustrated for the limited number of  possible transitive skeletons 
having four (tetrahedron, polarized square, allene, polarized rectangle), five (polarized 
pentagon), and six (octahedron, cyclopropane, polarized hexagon) sites. All skeletons 
having seven or more sites have such high chiral dimensionalities that study of their 
chiral ligand partitions by these methods appears intractably complicated. 
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